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Challenges in Decarbonization of Electricity Systems - H-UTokyo Lab.

The main challenges in achieving decarbonization of electricity systems are: stable power supply, enhancing resilience,
utilization of decarbonization technologies, advancement of electricity system operations, and utilization of data and digital
technologies.

The power supply and demand simulation model is an important tool that contributes to the quantification and
objective evaluation of mitigation technologies.

Reinforcing stable power supply Enhancing resilience

Reinforcing measures for the large-scale introduction Strengthening ability to respond in normal times and
of renewable energy during supply shortages

Securing supply capacity, adjustment capacity, and [Progress in electrification increases importance of electricity in
inertia; maintaining, managing, maximizing, and society].

enhancing the transmission and distribution network; Further improvement of reliability of supply in normal times
optimizing the supply-demand balance; securing and response to unexpected rare-frequency risks such as
investments; and controlling electricity costs. natural disasters and severe weather.

Accelerating technology innovation Operational sophistication for the use of DER such as
Shift to renewable energy as main power source (solar and wind power), renewable enerqgy
power storage (grid-use storage batteries, EV batteries, thermal storage

power generation, etc.), hydrogen and ammonia power generation (co-firing,
mono-fuel combustion), distributed power sources (fuel cells, cogeneration),
transmission and distribution networks (high-voltage direct current
transmission, microgrids, etc.), demand response, nuclear power (innovative
light water reactors, small reactors), CCUS (CO, capture, utilization, and
storage) technology, sector coupling technology (methanation, etc.)

CCUS: Carbon dioxide Capture, Utilization and Storage, DER: Distributed Energy Resources, EV: Electric Vehicle, PV: Photovoltaic

Sophistication of power grid operation (bidirectional power
flow [between regions and upstream/downstream]), more
flexible power demand (DER utilization [EV, heat pumps,
PV+ storage batteries, change in consumer behavior,
etc.])

© H-UTokyo Lab. 2023. All rights reserved.
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Power Supply and Demand Operations (Kyushu region: Apr 2021) H-UTokyo Lab.

Large-scale output suppression has been implemented in Kyushu, where the ratio of renewable energy use is high. There is a

need to plan and implement measures early on to maximize the use of renewable energy.
e Ensuring adljus_tm_ent capacity, maximizing and increasing transmission capacity, expanding power storage capabilities, and
increasing flexibility in power demand.

e Fluctuation and decline in wholesale electricity prices -> decline in incentives for increase and maintenance of power sources,
and concerns over future supply shortages.

There is a need for multifaceted and quantitative visualization of issues and for evaluation of countermeasures.
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Large-scale Numerical Simulation of the Power Grid H-UTokyo Lab.

7
Numerical simulation of power supply and demand using an optimized power supply/demand model (developed by
Fujii-Komiyama Lab, University of Tokyo).

. Analysis of the best mix of power sources under various technical conditions and CO, constraints for the entire bulk power supply grid in Japan.

. Geographical resolution -> 383 bus lines and 475 core transmission lines -> detailed consideration of power grid constraints and renewable energy weather conditions.

. Time resolution -> analyzed by 1-hour value and 8,760 hours annual time -> detailed consideration of fluctuations in renewable energy output.

. Consideration of various technical factors such as innovative technologies: Coal, coal-ammonia co-firing, coal-CCS, gas composite, gas-fired steam power, gas-hydrogen co-firing, gas-CCS, petroleum, hydrogen, nuclear
power (large reactor, small reactor), general hydropower, geothermal, biomass, ocean, solar, onshore wind power, offshore wind power, pumped water, NAS battery (for long period variation), and Li-ion batteries (for short-
cycle fluctuations) *CO, that cannot be recovered by CCS thermal power is assumed to be offset by negative emission technologies in other sectors.

. Main assumptions: Solar power (can be newly installed without setting an installation capacity limit), wind power (upper limit is set based on evaluation of potential for introduction by the Ministry of the Environment),
hydrogen power generation (maximum 20M ton capacity per year, import price 20 yen/Nm3), nuclear power generation (60-year operation scenario [23.7GW], no new additions), etc.

. (Actual) Materials of the Strategic Policy Committee of the Advisory Committee for Natural Resources and Energy, METI (43rd Meeting, 2021), METI Contracted Industrial and Economic Research Project "Simulation Survey
Using Power Supply and Demand Models" (2016), etc.

Point of the report: Importance of quantification and congestion management for inertia measures by digitally solving grid constraints
and detailed modeling of renewable energy weather conditions.
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Tool Key Function 1: Power An

alysis

3 H-UTokyo Lab.

Under transmission and resource constraints, derive the power supply configuration with the lowest social cost and the amount of power generated
to achieve the target CO, emissions.

. Case settings (CO, emission limit): Standard (no CO,restrictions), 200g-CO,/kWh, 100g-CO,/kWh, 50g-CO,/kWh, CN (limit at zero CO, emission).
. Carbon neutrality restrictions -> Expand the introduction of solar power, wind power (onshore and offshore), clean thermal power (hydrogen power generation, etc.),

grid storage batteries, etc.

Coupled analysis of supply-demand simulation and grid simulation with a geographical resolution of 383 points
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i H-UTokyo Lab.

Tool Key Function 2: High Temporal Resolution

Sectional analysis at 8,760 [hours/year] enables supply/demand analysis for power, energy storage, and demand by
incorporating hourly, daily, and seasonal fluctuations.
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i} H-UTokyo Lab.

Enables calculation of change in electricity costs over time, including power generation, storage, and transmission losses
Visualization of cost changes according to the transmission network reinforcement plan.

«  Due to CO, constraints and the uptake of renewable energy, the average level of electricity prices will rise, and the range of

fluctuations may also expand.
« Uptake of renewable energy -> securing adjustment capacity (grid-use storage batteries, clean thermal power); strengthening power

transmission lines -> rise in power prices.
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Tool Key Function 4: Renewable Energy Ratio Evaluation Over Time

Enables derivation of period and quantity needed to strengthen the inertia force
Enables quantitative evaluation of effectiveness of inertia enhancement measures.

Pseudo-inertia control of renewable energy inverters, synchronous condensers, clean thermal power (hydrogen, CCS, etc.), nuclear power, pumped water
hydropower, thermal storage power generation, etc.
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Emerging Issue 1: R
Need for Locational Electricity Pricing and Distributed Resource Coordination i H-UTokyo Lab.

For the construction of an optimal power grid (effective utilization and enhancement of power line capacity) aimed at shift to renewable energy as main power

source, it is effective to alleviate power transmission congestion through the locational electricity pricing (nodal pricing) mechanism.

Transmission line reinforcement: Important to evaluate cost-effectiveness of transmission line reinforcement costs, taking into account the cost of transmission

line congestion mitigation measures (DR, storage batteries, etc.).
Locational marginal price (nodal price [LMP]): Important indicator for determining transmission line investments, reflecting the supply/demand situation at each

location (high-priced locations — relatively high cost-effectiveness of power supply expansion). Location guidance of renewable energy sources through nodal-
price visualization is also an important issue in alleviating transmission line congestion.

Transmission line capacity shadow price, inter-regional transmission flow (e.g. Tokyo-Chubu)
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Emerging Issue 2:

Formulation of Measures to Improve the Flexibility of Electricity Demand

" H-UTokyo Lab.

Improving the flexibility of electricity demand, such as through DR, is extremely effective for shifting to economically rational renewable energy as
main power source. Efforts should be made to motivate demand coordination, secure a commitment base, and maximally leverage voluntary
coordination.

« How should we increase the flexibility of power demand through end-use technologies (EV, heat pumps, BEMS, HEMS, etc.) and
behavioral changes, and how should we commit demand-side technologies to supply and demand adjustment?
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Emerging Issue 3:

Fusion of Hydrogen Technology and Power Control that Balances Storage and

Energy Security #it H-UTokyo Lab.

There is a need to properly grasp the duration and quantity of energy storage, and to operate optimal storage technologies

and develop elemental technologies in accordance with the duration and quantity.

« Hydrogen storage is one of the technology options suitable for long-term storage (weekly, monthly, seasonal) with low storage loss.

(However, since long-term hydrogen storage has high OPEX, storage by methanation, ammonia, MCH conversion, etc. may be more economical.)
« Long-term storage of battery power entails large losses, while batteries are better suited to frequent charging and discharging on a daily basis.
« However, seasonal storage of renewable energy requires a significant reduction in initial investment (there are few opportunities for

charging/discharging, and limited profit opportunities).

g Annual trend in wind power output (Tohoku Region)
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1 H-UTokyo Lab.

Conclusions

Issues and recommendations for decarbonization of electricity systems derived from large-scale numerical simulation
model of power supply and demand.

Decarbonization of electricity systems requires @ visualizing multifaceted and quantitative issues using numerical
simulation models, and @ evaluating the measures. Evaluation using large-scale numerical simulation model backed by
digital technology is imperative.

B Main functions of the model

« Power source analysis: Under transmission and resource constraints, derive the power supply configuration with the lowest social
cost and the amount of power generated to achieve the target CO, emissions.

« High temporal resolution: Sectional analysis at 8,760 [hours/year] for supply/demand analysis for power, energy storage, and
demand by incorporating hourly, daily, and seasonal fluctuations.

« Quantification of power generation costs: Visualization of changes in power costs over time, including power generation, storage,
and transmission losses, as well as cost changes according to the transmission network reinforcement plan.

« Evaluation of renewable energy ratio over time: Enables derivation of period and quantity needed to strengthen the inertia force
Enables quantitative evaluation of effectiveness of inertia enhancement measures.

B Issues that have emerged from model analysis

* Need for locational electricity pricing and distributed resource coordination
Building an optimal transmission network aimed at shift to a renewable energy as main power source entails alleviating
transmission congestion through the nodal price mechanism.

« Formulation of measures to improve flexibility of electricity demand
Improving the flexibility of electricity demand, such as through DR, is extremely effective for shifting to economically rational
renewable energy as main power source. Efforts should be made to motivate demand coordination, secure a commitment
base, and maximally leverage voluntary coordination.

« Fusion of hydrogen technology and power control that balances storage and energy security
There is a need to properly grasp the duration and quantity of energy storage, and to operate optimal storage technologies
and develop elemental technologies in accordance with the duration and quantity.




H-UTokyo Lab.
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(Appendix) Role of Power Storage a } H-UTokyo Lab.

-\ﬂﬂb_, 7

Expectations for the use of power storage towards a stable supply of electricity and large-scale
introduction of renewable energy.

« Against the backdrop of lower costs and the spread of electric vehicles, interest in the utilization of grid-use storage batteries is growing.
- In California, grid-use storage batteries are being used to alleviate fluctuations in renewable energy output and during supply shortages.

Power supply/demand balance (California, Feb 4, 2022 [Sun])
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3 H-UTokyo Lab.

(Appendix) Role of Power Storage

Introduction of grid-use storage batteries and use of pumped water hydropower contribute to
decarbonization and expansion of introduction of renewable energy.

- During large-scale introduction of renewable energy, sufficient power storage is maintained in preparation for a windless

period, and electricity is discharged when there is no wind.
« It is suggested that it is best to operate power storage technology based on forecast of future supply/demand situation.
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- H-UTokyo Lab.

(Appendix) Renewable Energy Output Fluctuations

Large-scale introduction of renewable energy also requires taking comprehensive measures against
fluctuations in renewable energy output (by minute, hour, day, and season).

« Wind and solar power output fluctuates in short cycles (by minute, hour, and day,) as well as in long cycles (by season).

« Wind power generation: Relative decrease in output around summer; solar power generation: relative decrease in
output around winter.

« Seasonal fluctuations must be addressed to effectively utilize renewable electricity upon large-scale introduction of
natural variable power sources.

« Challenge: Long-term energy storage is required, and opportunities for charging/discharging are limited -> not easy to
recover investment.

Wind power output (Jan. 1 to Dec. 31, 2021, Tohoku Region) Solar power output (Jan. 1 to Dec. 31, 2021, Tohoku region)
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(Source) Prepared based on actual supply and demand in the Tohoku Electric Power Network area
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