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基幹電力システムの中長期的課題への取り組み
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カーボンニュートラルに向けたバックキャスティング
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エネルギーミックス エネルギーシナリオ、長期戦略

2030～2040年はPV中心の再エネ拡大にならざるを得ない。
⇒調整力確保、既存電源の運用採算性

原子力活用シナリオ
(原子力発電を50GWまで増設@2050年)

不確実な情勢の中で、定量的な中長期のエネルギーシナリオに基づいた分析を実施

(32%増)

(45%増)

(63%増)

(42%増)

脱炭素電源の拡大は長期的に見て
エネルギー自給率を高める。
他方、エネルギー使いこなし、
送配電のコスト負担見通しが不可欠
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カーボンニュートラルに伴う基幹システムの対策
変動再エネの拡大に伴い、課題が顕在化。基幹システムの対策とともに、センシングによる予見性確保も重要
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(新燃料、CCS)，原子力機活用

・再エネインバータの「擬似慣性制御」
や「同期調相機」の導入
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CCS: Carbon dioxide Capture and Storage, EV: Electric Vehicle, HVDC: High Voltage Direct Current (直流送電)
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地震時の電源脱落で周波数が急低下
→ 電源脱落や停電範囲拡大が懸念

慣性増

火力発電等の
回転機減少で
慣性低下が
要因

再エネ出力急変により需給不均衡
となり周波数変動発生が懸念

・蓄電やEVの充放電
・電力消費の制御

(デマンドレスポンス）

調整力確保

偏在する再エネ電力を需要地へ
送電する能力に限界

対策：
HVDC等による増強，分散リソース
の電力制御で系統安定性改善

課題

解決策（提言）
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電力系統混雑シミュレーションを踏まえた電力インフラ整備

9.6円/kWh        11.6円/kWh

全国の基幹系統モデル(1,161母線、1,349本の基幹送電線、年間8,760時間(1時間値))

最適化型電力需給モデルによる電力数値シミュレーション(東京大学 藤井・小宮山研究室にて開発)
系統制約を詳細に考慮の上、電源ベストミックスを分析

(参考) Komiyama,R.,Fujii,Y.,Energy Policy,101(2),594-611(2017) , 
Komiyama,R.,Fujii,Y.,Renewable Energy,139,1012-1028 (2019)ほか
(実績)経済産業省総合資源エネルギー調査会基本政策分科会資料(第
66回会合,2024年), 経済産業省産業経済研究受託事業「電力需給モデ
ルを活用したシミュレーション調査」(2016年)他

地点別電力限界価格(ノーダルプライス[LMP])：米国の主要な電力市場にて導入済み。各地点の需給状況を反映し
(高価格地点→電源増強の費用対効果が相対的に高い)、送電線投資検討の重要な指標。

地点別電力限界価格(LMP)の年間平均値
（1,161地点別）
※再エネ電力比率約5割を想定(陸上風力：
約1,800万kW、洋上風力：約500万kW、
太陽光：約1億kW)

※従来モデルの系統規模(383母線、475本の基幹送電線)を大幅に拡張

将来の再エネ大量導入と系統混雑緩和に向けて、地点別電力限界価格(ノーダルプライス)の可視化も有益なオプション
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再エネ大量導入に向けた電力系統の柔軟性の確保

(参考) Komiyama,R.,Fujii,Y.,Energy Policy,101(2),594-611(2017) , Komiyama,R.,Fujii,Y.,Renewable Energy,139,1012-1028 (2019)ほか
(実績)経済産業省総合資源エネルギー調査会基本政策分科会資料(第66回会合,2024年), 経済産業省産業経済研究受託事業「電力需給モデルを活用したシミュレーション調査」(2016年)他

電力需給運用(全国)の数値シミュレーション結果例(2040年5月1日～5月31日)

再エネ大量導入に向けて、調整力の確保(火力、電力貯蔵、DR等)による系統柔軟性の向上が不可欠

※再エネ電力比率約5割を想定(陸上風力：約1,800万kW、洋上風力：約500万kW、太陽光：約1億kW)

全国の基幹系統モデル(1,161母線、1,349本の基幹送電線、年間8,760時間(1時間値))

需給運用全体(全国)

太陽光発電(全国)

陸上風力発電(全国)

洋上風力発電(全国)

LNG複合発電(全国)
-50

0

50

100

150

200

250

300 出力抑制(太陽光)
出力抑制(風力[洋上])
出力抑制(風力[陸上])
蓄電池[短周期](out)
蓄電池[長周期](out)
揚水(out)
蓄電池[短周期](in)
蓄電池[長周期](in)
揚水(in)
太陽光

風力(洋上)
風力(陸上)
石油

LNG複合

LNG汽力

石炭

原子力

バイオマス

地熱

一般水力

電力負荷

出力抑制(太陽光)太陽光 LNG複合
石炭

揚水(in)

揚水(out)
陸上風力洋上風力

原子力 一般水力出力抑制(太陽光)
太陽光

陸上風力出力抑制(陸上風力)

洋上風力出力抑制(洋上風力)

LNG複合

[100万kW]

-50
0

100

200

300

50

150

250

300
200
100

0
15
10
5
0

15
10
5
0

100

50

0




	基幹電力システムの中長期的課題への取り組み
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6

